If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+8a-51=0
a = 1; b = 8; c = -51;
Δ = b2-4ac
Δ = 82-4·1·(-51)
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{67}}{2*1}=\frac{-8-2\sqrt{67}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{67}}{2*1}=\frac{-8+2\sqrt{67}}{2} $
| x+3/4-25=-22 | | 5(s+1)-9=-19 | | 4.905t^2-120t-125=0 | | 8t+9=-39 | | (x+9)=5(4+9) | | 7n-8-2n=-12 | | -1-(-22)=x/12 | | 8d+3d-4=10d+6 | | (374-3y)+y=146 | | {x-4}{5}=-6+9 | | 3x-8=42+x | | p/4=1.25 | | -13=r/9+8−13=9r +8 | | 5x/2-3=-23 | | -7c/3+2=9 | | 48+5y-2=15y-10-2y | | -3q+5=29 | | 6r-8=-8(6r) | | 2(p+13)=31 | | x-5/4+3=7 | | -3x/2+5=-4 | | 4(p+5)-3=-15 | | 10k^2+12k-94=0 | | 5x/3+11=21 | | -x/8+11=2 | | y´´´-5y´´+8y´-4y=0 | | 1.2/4=t/10 | | 2(p+5)-9=-11 | | 12(y+3)=5(2y+7) | | X=4(x-240) | | 4(-3h+5)=-16 | | 9(x-7)+8=26 |